Exploring the Potential of Replacing Empirical Rules with Theoretical Foundations
Ajinomoto Co., Inc.
Food Products Division Institute of Food Sciences and Technologies
Product Development Center Engineering Group
Ms. Sumi Yamazaki, Mr. Kazuaki Shibuki, Mr. Takeshi Nishinomiya
Enhancing Research Efficiency: Exploring Alternatives to Physical Experiments
Most of our products consist of “powders”, such as seasonings, soups etc. We are working on particles design to enhance the function of the powder and the technology to control the physical properties of the powder for a better product, but in fact the behavior of powder is quite tricky. For example, if liquids are mixed, basically they are maintained at a homogeneous mixture state. Whereas for powders, it is possible for segregation to occur. As a result, the powders may not be mixed evenly and the product might need to be discarded.
Experiments are carried out in a small scale to find the solution for this issue, but it may not work well when it is scaled up for an actual machine. As a result, the experiments have to be conducted all over again, resulting in a waste of time and raw materials for the trial and error process.
At the time when I was looking for a more effective way to solve this issue, I have learned about powder simulation technology at an academic conference. With the guidance of Dr. Mikio Sakai (Full Professor at System Resilience Engineering Research Center, The University of Tokyo), we considered the applicability of the simulation software to our assignment for a year. As a result, the powder simulation software iGRAF was introduced. Simulation software from other companies were also considered but iGRAF impressed us with its simple and intuitive operational method.
Other companies provided trial version and also trainings but it seemed difficult to set the simulation parameters or run the software without relying on them. On the other hand, iGRAF can be easily used by learning the software tutorials. This is why iGRAF is chosen.
Reproducibility: Embracing Flexibility and Benefits
The common processes of various powders are mixing, discharging and filling. We have started with the analysis of storing and discharging process of a hopper.
The powders that we are using are smaller than 1mm. With the simulation, we do not expect that the phenomenon to be reproduced perfectly as extremely difficult calculations are needed in order to use the original particle size. For example, cases A, B and C with different conditions are simulated to find the worst condition. If the process can be practically reproduced to find the worst condition, two-thirds of the cost of stopping the production line for testing purpose can be reduced. This is the most significant benefit of this software.
Also, if devices with different shapes are to be tested, it takes several months to produce the devices. Even the test devices are ready, experiments and analysis require time, too. With iGRAF, however, the results can be obtained within a week. Time reduction is also one of the notable benefits of this software.
Harnessing iGRAF Expertise for Design Optimization and Innovation
It is known to be difficult to calculate with the actual size of the particle, but we would like to accumulate the know-how of the simulation in order to overcome it.
One of the ways to utilize the software is to solve the problems arise from the manufacturing site. Besides, we can accumulate the basic knowledge of the optimal operation conditions of the equipment that we are using. Although repeating the tests by using equipment is common in the industry, wouldn’t it be better to do it at a lower cost? In other words, the decisions based on experiment experiences can be replaced by the physical theories.